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Abstract

The present work concerns the natural convection of non-Newtonian power-law fluids with or without yield stress
over the permeable two-dimensional or axisymmetric bodies of arbitrary shape in a fluid-saturated porous medium.
Using the fourth-order Runge—Kutta scheme method and shooting method we obtain the local non-similarity solutions.
The parameters that include the dimensionless yield stress 2, permeable constant ¢ and power index n are studied, and
the heat flux and the wall temperature are taken into consideration as variables. The local non-similarity solutions are
found to be in excellent agreement with the exact solution. It is found that the results depend strongly on the values of
the yield stress parameter, the wall temperature distributions, the lateral mass flux rate, and the heat flux at the

boundary. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Cheng [1] discussed the Newtonian fluid of natural
convection boundary layer on a permeable vertical wall
embedded in a saturated porous medium. He found the
similarity solutions if the wall temperature and transpi-
ration velocity varied as x* and x“"1/2 respectively.
Merkin [2] considered the effect of the natural convec-
tion of the lateral injection or withdrawal at constant
transpiration velocity of Newtonian fluid at constant
temperature on a vertical plane wall in a saturated po-
rous medium, as given by Darcy’s law.

Liu [3] presented the free convection boundary layer
flows of Newtonian fluids on two-dimensional and axi-
symmetric bodies of arbitrary shape embedded in a
saturated porous medium, if the bodies are assumed to
be permeable with lateral mass flux and at a constant

*Corresponding author. Tel.: +886-6-2757575-62140; fax:
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temperature. He defined a modified stream function to
satisfy the same boundary conditions used by Merkin [4]
and to get similarity solutions. Nakayama [5] showed
that similarity solutions existed for the non-isothermal
bodies, which may be either two-dimensional or axi-
symmetric with arbitrary shapes. Nakayama used the
approximate method based on the Karman-Pohlhausen
integral relation to get the solutions. Minkowycz [6] used
the local non-similarity method to solve Merkin’s
problem [2]. The results were found to be in good
agreement with the finite difference method for the mass
flux effects.

Acrivos [7] studied the problem of laminar natural
convection heat transfer to non-Newtonian fluids over
axisymmetric and two-dimensional bodies of arbitrary
shape to show the non-Newtonian effects. Reilly’s [§]
experimental work was performed for the study of nat-
ural convection heat transfer from heated vertical plate
to a non-Newtonian fluid and the results agreed with the
theoretical analysis of Acrivos’s.

The rheological effects of non-Newtonian fluids
through porous medium occur in a broad range of
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Nomenclature

constant, 0<a < 1

exponent of Egs. (26), (32), (47), (52)

permeable constant, —1 < ¢ < 1

function of surface temperature, Eq. (23)

similarity stream function

gravity

function of shape, Eq. (44)

) function of shape, Eq. (43)

3 function of dimensionless temperature,

Eq. (44)

h local heat transfer coefficient of porous
medium

H consistency index

k permeability

ket effective thermal conductivity

l reference length

m constant, if m = 0 for two-dimensional bodies,
if m =1 for three-dimensional axisymmetric
bodies

n power index of non-Newtonian fluids, n > 0

Nu,  local Nusselt number, Eq. (56)

P pressure

qs the surface dimensionless local heat transfer

rate, Eq. (55)

qn heat flux of wall surface

o overall surface dimensionless heat transfer
rate, Eq. (59)

Ra,  modified Rayleigh number, Eq. (9)

radial distance

variable of shape

local temperature of fluid

reference temperature

Darcian velocity in the x direction

Darcian velocity in the y direction

Darcian velocity vector

the width of the two-dimensional body

similarity function, Eq. (16)

coordinates

QAQQ® (S >R
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by
~

Greek symbols
oo threshold gradient

et effective thermal diffusivity

p coeflicient of thermal expansion

Ot dimensionless thermal boundary layer
thickness

Om dimensionless momentum boundary layer
thickness

7 shear rate

¢ angle

€ porosity of porous medium

[0) dimensionless stream function, Egs. (10a) and
(10b)

m similarity variable, Egs. (18a) and (18b)
1 similarity variable, Eq. (44)

0 dimensionless temperature

Q dimensionless yield stress, Eq. (9)

4 dimensionless variable of body of shape,

Eq. (22)
£ dimensionless variable
A exponent for surface shape
i viscosity of Newtonian fluid
Uep effective viscosity of non-Newtonian fluid
o density of non-Newtonian fluid
T shear stress
Ty yield stress
¢ the experimental coefficient
¢ angle
Subscripts
0 reference property
ef effective property
w wall property
X local property
00 ambient property of porous medium
Superscripts
average property
* dimensionless property

engineering applications such as transport processes in
chemical industry, storage of nuclear waste material and
discoveries of the flow of oil in petroleum reservoirs, etc.
There are a considerable amount of researches that have
been devoted to the study of non-Newtonian power-law
fluids in a saturated porous medium with various im-
permeable surfaces. The researchers are McKinley et al.
[9], Pascal [10-12], Chen and Chen [13], Pascal and
Pascal [14], Yang and Wang [15] and Getachew et al.
[16]. Nevertheless, the former studies [9-16] are re-
strained to the impermeable surface. The effect of the
uniform lateral mass flux in natural convection of non-
Newtonian fluids over a cone embedded in a saturated

porous medium is solved by Yih [17]; Yih utilizes the
implicit finite difference approximation together with the
modified Keller box method.

Cheng [18] applied the integral method to obtain the
theoretical solution on the combined heat and mass
transfer by natural convection from truncated cones in
Newtonian fluid-saturated porous medium with variable
surface temperature and concentration. Recently, Ju-
mah and Mujumdar [19] investigated the problem of
natural convection coupled heat and mass transfer from
a vertical flat plate in a porous medium saturated with a
Herschel-Bulkley fluid. The major result is that the
Lewis number Le and parameter Q have more significant
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effect on the heat and mass transfer rates for a pseudo-
plastic fluid compared to the dilatant fluids.

The present work extends the problem of natural
convection of flow with or without yield stress over the
non-isothermal bodies of arbitrary shape with per-
meable wall. The governing equations with two different
cases of boundary conditions will be discussed, respec-
tively. The first case concerns the performance of both
the wall temperature as a power function of distance
from the origin and the non-zero lateral mass flux at the
boundary under an appropriate distribution. The second
case discusses the performance of the flux heating with
lateral velocity at the surface of body. In this study, the
performance of the wall temperature and constant heat
flux are considered. The local non-similarity method was
used to solve this problem.

2. Analysis

Owing to non-Newtonian fluids having many rhe-
ological behaviors the generalized Bingham rheological
model [12] was employed here. The empirical relation
can be expressed as

T:H(’Q)n+‘[07 T > Tp, (1)

where 7 is the shear stress, H is the consistency index, n is
the power-law exponent to be determined from exper-
imental test, 7o is the yield stress, and 7 is the shear rate.
For the values of n which is greater than unity the be-
havior is dilatant fluid. On the other hand, for the values
of n which is less than unity the behavior is pseudo-
plastic fluid [20].

The Al-Fariss modified Darcy’s law [21], in this
study, is used and expressed as:

V= [k(vp - ao)//"ef}l/nv (221)
which was valid provided that

IVP| >y, V #£0,

(2b)
‘VP| g 0o; V= 07
where oy was the threshold gradient in the modified
Darcy’s law and satisfied the following equation:

%y = sfo/kl/z’ (20)

where ¢ and k are the experimental coefficient and the
permeability of porous medium, respectively. There is
the relation of the effective viscosity p; as

1 n
Hep = (1/2)“”*”/2}1(—3’12+ ) (ak) ™2 (2d)

in which the tortuosity effects have been considered and ¢
was the porosity of porous medium. When n = 1.0,
o9 = 0 and u, = p are specified, the Eq. (2a) is a suc-
cessful approach for a Newtonian fluid with Darcy’s law.

¥V ‘ 4 ¥V
e |
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|(0,0)
Fig. 1. Physical model and coordinate system.

The physical model and coordinate system in this
study are shown in Fig. 1. These governing equations
have to obey the following assumptions:

1. Properties of the porous medium and the fluid are
constant, unless the density p is not constant in the
boundary layer.

2. The Boussinesq approximation is employed.

3. The natural convection flow is in uniform steady state
and in laminar flow region without turbulence.

4. The viscous dissipation term in the energy equation is
neglected, as well as the radiation, chemical reaction,
and electromagnetic effects.

5. The convective fluid and the porous medium are in
thermodynamic equilibrium at every point in the sys-
tem, and the temperature of the fluid is below the
boiling point. Furthermore, the fluid is not in the
neighborhood of the saturation state [22].

6. Without multi-phase zone where mixing of gases,
bubbles, vapors, solids and liquids exists in the liquid
boundary layer and in the porous medium.

The governing equations with boundary layer sim-
plifications are given as:

1. Equation of continuity:

o(r'"u) n o(r™v)

> 5 =0 3)

if m =0 for two-dimensional bodies, if m =1 for
three-dimensional axisymmetric bodies and r(x) is the
radial distance from the axis to surface of the axi-
symmetric bodies.

2. Momentum equation:

kp..Bg %o
W =—>=|(T—Ty)cos¢p —
Hef ( Jeos P BBg
if |(T — Tx)cos¢| > paoﬁg, (4a)
. 0o
u=0 1if |(T—Ty)cosp|<——, 4b
I( ) cos ¢| e (4b)
where cos¢ = [1 — (dr/dx)z]l/z. (4c)
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3. Energy equation:

or oT T T
( ) (5)

ua—i-va—y: @4_@_}22

where u and v are the modified Darcy’s velocities in
the x- and y-directions, k is the intrinsic permeability
of the porous medium, p_, is the density of fluid, g is
the gravitational acceleration, f§ is the coefficient of
thermal expansion, o and p are the effective thermal
diffusivity and the effective viscosity of the porous
medium saturated with liquid, respectively. When ¢(x)
is defined as the angle between the outward tangent
and downward vertical of the wall surface Eq. (4c) is
satisfied.

In accordance with the boundary layer theory, Egs.
(3)-(5) can be expressed in the following dimensionless
form:

a*m* a*m*
()'u 3r)"

Ox* oy =0, (6)
u' = (0S — Q)" if 0S| > Q,
w =0 if |0S)<Q, (7)
* 2
u*%+v*%=a ﬂ (8)

" o ef 2

The dimensionless variables appearing in equations
above are defined as

P R yRal/2 0 T-T,
rr=-, x*==- =
67 67 y = [ ’ Tb — Tocv
ul vl
S=cos¢, u" vt = ,
(z) Ranaef Ra,l,/zflef
T—T.)1"" ¢
=%  andRa,= {7[)“[%( 0 )} -
PPg(To—T) Heg e
©)

Note that Ra, is defined as the modified Rayleigh
number with # denoting the power-law index; ¢, T, and
T, are the reference length, the reference temperature
and the temperature outside the boundary layer, re-
spectively. It is suggested that, if 7}, is a constant then we
can set Ty = T, if T,, is not a constant then we can select
Ty = T,(0). In order to satisfy equation of continuity,
the dimensionless stream function ¢ is defined as fol-
lows:

1 0¢
U =——, 10a
)" oy (10

. —1 09

Two different cases of the boundary conditions of the
Egs. (6)-(8) are considered that we deal with an im-

portant problem. The first case is considered that when
surface temperature and the velocity of lateral mass flux
are specified. The second case is considered that when
surface heat flux and the velocity of lateral mass flux are
specified.

2.1. Case 1: The surface temperature and the velocity of
lateral mass flux are specified

The surface temperature 7, (x) and the velocity of
lateral mass flux v, (x) are expressed in the following
form:

v=uvy(x), T=Ty(x) aty=0, (11)

u=0, T=T, asy— . (12)

The corresponding dimensionless form can be described
as:

vt =0, (x"), 0=0,(x") aty =0, (13)
uw'=0, 0=0 asy — oo, (14)
where

Ty — Ty
- Uwg _tw oo (15)

=—5 > v =
Ra,/ Oef TE) - Too

The following pseudo-similarity dimensionless trans-
formations are introduced:

1/2

¢ = { / ()t dé} (058)"2" 1 (n))
=X(x")f(m), (16)
m o=y ()" (0.8)" [ / (s dct} o : (17)

The dimensionless velocity component in the x- and y-
directions can be written as

= (ews)l/nf,(rll)v (18d)
. (Xf(m) a’“)/w)"z (18b)

where f(n,) is the similarity dimensionless stream
function.
Based on Egs. (15)-(17), (18a) and (18b), we have

07+ L1+ Q) ) B,

gy

fC{f -0 (19)
1/n

f':[el— 9‘2} it (0] > 12/(0,5)!, (200)

F=0 i (0] <[2/(0,5). (20b)

where
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0, =0/0,, (21)
()= [ osiae, (22)
E() = (dl(?;)w. (23)

The boundary conditions for solving Egs. (19), (20a)
and (20b) are

- —1 o w0\ M
fzgl/"—cl/z/(; (}’) def, 01:1 atn,:0, (24)
=0, ;=0 asn — oo. (25)

In order to obtain similarity solutions for Egs. (19),
(20a) and (20b) with boundary conditions, Egs. (24) and
(25), the restrictive interface conditions of following
both the conditions 1 and 2 are necessary.

2.1.1. Condition 1

When the surface temperature and the velocity of
lateral mass flux are specified the following interface
conditions are defined

0=, S=0" v, = C(Zbﬂ) ()"0, (26)
2n

where b > (—n/2), ¢ < 0 for discharge of fluid, ¢ > 0 for
withdrawal of fluid and the range of ¢ values is
—1< < 1. The value of c is called permeable constant,
particularly, when ¢ =0 is defined for impermeable
surface. The Egs. (19), (20a), (20b), (24) and (25) can be
reduced as:

=0 -9 it o] > o (272)

=0 if |6,|<Q, (27b)

0! + (”“’)fog —bf'0, =0, (28)
2n

subject to the boundary conditions

f=—¢c 0i=1 atn =0, (29)

f=0, 6,=0 asny — oo. (30)

Note that in the condition 1, if we consider that the body
of shape is two-dimensional then we can find the fol-
lowing equation:

§ = [(b+m)x" n] "0, (31)

2.1.2. Condition 2
The interface conditions are defined as

0=, Q=0,
Uy = L<2b2:l_ n) (r*)mSl/ng(Zb-Hz)/M’ (32)

where b and c¢ are constants; the value of ¢ is
—1<c<1; the value of b is an arbitrary real number
which is greater than or equal to zero. Eq. (32) is for
the fluid without yield stress through arbitrary three-
dimensional axisymmetric or two-dimensional bodies
with permeable surface in a porous medium. Substi-
tuting Eq. (32) into Egs. (19), (20a), (20b), (24) and
(25), yields the following dimensionless ordinary dif-
ferential governing equations:

r=o, (33)

0] + (" ks b)f(?’] — bf'0; =0, (34)
2n

subject to the boundary conditions

f=-c 0=1 atn =0, (35)

f'=0, 6, =0 asn — oo. (36)

2.2. Case 2: The surface heat flux and the velocity of
lateral mass flux are specified

Let the value of heat flux ¢, not be a constant and the
value of velocity vy, (x) of lateral mass flux on surface not
be zero. When above conditions are taken into consid-
eration the boundary conditions for solving Egs. (3)—(5)
are described as:

or _ qu(v)
v = vy (x), T
u=0, T=T, asy— oo. (38)

aty =0, (37)

Introducing new dimensionless variables, Eqgs. (11) and
(12) can be written as

¢ =), pn= ) aty =0, (39)
uw'=0, 0=0 asy — oo, (40)
where

0, — qn(x)¢ o0 (1)

A new variable 0, is introduced for this case

§1/@nr1)

0, = 7[)6*92]”/(2”1) 0. (42)

The following general dimensionless variables are pre-
sented as

o =[0)"0s] )" (), (43)

m =y [0,8(x) e, (44)

]1/(zn+1)

The dimensionless velocity component in the x direction
will be written as
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u = (025%) O py). (45)

Accordingly, based on Egs. (7), (8), (13) and (14), the
following equations can be obtained

1/n
fl — |:92 _ Q/(X*H£S2)n/(2n+l):|

if 105 > (Q/(x*ofsz)"/@"“) , (46a)
=00 if |0 < |@/ (v 27y e, (46b)
9'2/+f70l2 Bn++11 G21n++(1;3 * Gz] e

x {1 +2G; —%}f’% =x" {fgfz - 0’2%} (47)
where
G (x") =x" d(ij:*s , (48)
G (x") =x" dhclli—r:)m, (49)
Gy(x*) = x* d(liz*()r . (50)

The boundary conditions for solving Egs. (19), (20a)
and (20b) are

*

_1 ¥ *\Mm
f= (r*)m[(x*)(wl)grs]u(znﬂ)/0 (r)"vydé,
0h=—1 atn,=0, (51)
f =0, 6,b=0 asn, — oco. (52)

In order to get local non-similarity solutions in this case,
the restrictive interface conditions of following both the
conditions 3 and 4 are necessary.

2.2.1. Condition 3

It is defined as the non-Newtonian fluids with yield
stress through some two-dimensional bodies (i.e., m = 0)
in a porous medium and the interface conditions are
considered as

0, =) S=x)"" vy=-05c(x)",  (53)

where —1<c¢< 1, the value of b is an arbitrary real
number. In accordance with the Eq. (53), these Eqgs.
(46a), (46b), (47), (51) and (52) can be reduced as:

=0, — Q)" if 6] > @, (54a)
f=0 if |0, <, (54b)
0 +0.5/0, — (b+0.5)1"0, =0, (55)

subject to the boundary conditions

f=-c 0,=-1 aty,=0, (56)
=0, =0 asn, — oo. (57)

2.2.2. Condition 4

It is defined as the non-Newtonian fluids without
yield stress through some three-dimensional axisym-
metric or two-dimensional bodies and is conformed to
the following interface conditions

Dy = c(x*)(2mn+m+b7n)/(2n+l)al/(2n+1)(1 _ az)m/z
2mn+m+n+b+1
b 1#0, (58
p T ., b+m+1#£0, (58)

where a and ¢ are constants; the values of a and ¢ are
0<a < 1and —1<e<1, respectively. Here we can ob-
tain the function of *, that is »* = (1 — az)l/zx*. Using
Eq. (58), the Egs. (46a), (46b), (47), (51) and (52) could
be transformed as:

I=0y" (59)

n+b+l)f9/ _n(2b+1)
1 TS

/! ! —
02*(” Tl g1 =0 (60)
The boundary conditions are the same as Egs. (56) and

(57).
2.3. Heat transfer rate and Nusselt number
According to Fourier’s law of conduction, the sur-

face dimensionless local heat transfer rate ¢, (x) can be
written as:

. gy, (x)€ —¢ T
X) = = o
7y (%) (Ty — Too)ker  (Ty — To) Qy =0
00
= —Ra,l,/2 3y b= (61)
The local Nusselt number Nu, can be expressed as
hx o (x)x —X"Ra'/* 30
Nitw == = L = e N 62
Uy kef kef(Tw — Toc) Hw ay* y*=0 ( )

where & denotes the local heat transfer coefficient of the
non-Newtonian fluid in a fluid-saturated porous me-
dium.

The average heat transfer coefficient /# can be ex-
pressed as

~ 1! keRa!? [ 00

The average Nusselt number Nu can be written as

7 1
m:h—éz—Ra}/Z/ HWﬁ
ef 0 ay*

dr". (63)

=0

dx’ (64)

y*=0 ’

The overall surface dimensionless heat transfer rate can
be calculated by the following equation:
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C fyem)"em) gl (x)dx
o ket(To — Too) /4

Y

1

. o (1—m) 00 .
= 7271’”Ra1/2/ (r‘)'"(W*)(l ) o dx™,
n oy IV =
0 v

(65)

where W is the width of the two-dimensional body and
W* = W /¢. The overall surface heat transfer rate can be
calculated by O = Q% ke (To — To) /4.

3. Results and discussion
3.1. Exact solutions

It is showed that exact solutions to Egs. (33)-(36)
exist if the constant b is equal to the power index #n in

condition 2. Under such a restricted condition, we can
get exact solutions as:

01 = exp{—[(c’ +4m)"* — cJn, /2}, (66a)
—2n exp7 ((('2+4n)1//2ﬂ"71) 1
S 2n — —c,
(2 +4n)'* —¢ (66b)

n>0.

Fig. 2 shows the effects of the power index n and per-
meable constant ¢ on the dimensionless temperature 6,
and similarity stream function f profiles. The dimen-
sionless temperature distributions are considered when
¢c=00,n=10,b=10and ¢c=1.0, n=2.0, b=2.0.
The different distribution profiles are found obviously
when ¢ = 1.0, n = 0.1 and b = 0.1. The expressions for
the dimensionless thermal (6;) and momentum (Jy,)
boundary layer thickness can be obtained from Egs.
(66a) and (66b) if the edges of the boundary layers are
defined as the points where 0/0,, = 0, or [f'(1)/f'(0)]

1 b=n for State 2.

o
»

o
'S

Dimensionless Tempcerature 6,
o [=3
~ o

(a) Similarity Variable 7,

399

has a value of 0.01. The dimensionless thermal and
momentum boundary layer thickness then can be ex-
pressed exactly as

80 =41In(10)/[(¢" +4m)'” — <],
om = 4nIn(10)/[(¢” +4m)' — ]

In addition, the interesting relation d,,/d; = n is found
by considering the above conditions. It can be seen from
Fig. 3 that §, increases as n decreases and J,, increases
with n when c is fixed. As illustrated in Fig. 3, the values
of 9, are smaller than 10.0 if the power index n > 0.7,
and the values of o, are smaller than 10.0 if n < 2.5.
When we solve the problems numerically, both the val-
ues of #/(0) and the values of 5., for f(1,.) =0 which
are good for predicting the value of temperature gradi-
ent on the surface and how large is the value of similarity
variable 5, is enough. As an example, if we want to
obtain solutions, under the conditions ¢ =1, n=0.1
and »=0.1 then we have to set x, > 50.27 and
0,(0) = 0.0916078 for initial conditions of numerical
solutions.

For condition 4, if the constant 4 is equal to (3n + 1)
and the constant c is equal to zero, the exact solutions of
Eqgs. (59) and (60) are expressed as:

_exp[—(3n)" ",
0, = (3n)"/@ D ) (67a)
 all — exp(=(n" > /)] o

f (3n)(n+])/(2n+])

Under above Egs. (67a) and (67b), the dimensionless
thermal and momentum boundary layer thicknesses also
can be expressed correctly as o, = 21In(10)/(3n)" ")
and &, = 2n1n(10)/(3n)" "), respectively. It is seen

LS

s or State —c=10
k= 3 F e30 b=n for Stare 2 =00
S st e Ym -0
= n=0.¢
= r ‘ n=J. 0
= 1S - 2 A
RN T =
by~ P ne0 5
& s e - T an
2 AT e e s o o
= ¢’¢// ‘\W_\“lm]‘o ‘
S 05 , n=2.0
Rz ‘ n=1.0
= F n=0.5
g I n=0.1
5 2 L ! ! !

0 2 4 6 N 10

Similarity Variable 7,

Fig. 2. The dimensionless temperature and similarity stream function profiles versus #, for various values of power index n and

permeable constant ¢ in the condition 2.
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)
b=n

50 l &
Io) —e—C=10
! ol —%—C=405
\ —a—C=00
—e—C=05

30 be

—&—C=1.0

|
.
20-\

10 :‘\\\\ }*‘3‘
Tred “fmﬂtu 17

(@ n

(b) n

Fig. 3. The dimensionless thermal (J,) and momentum (J,,) boundary layer thickness versus power index » in the condition 2.

b=(3n+1), c=0.0

Fig. 4. The dimensionless thermal (J,) and momentum
(0m) boundary layer thickness versus power index n in the
condition 4.

from Fig. 4 that o, increases as n decreases and J,, in-
creases with n. Simultaneously, we are able to find
0y =0y, if the power index n is equal to unity. Fig. 5
shows the effects of the power index n on the dimen-
sionless temperature and similarity stream function
distributions for impermeable surface. It is seen from
Fig. 5 that f(c0) increases with n and 0(0) decreases as n
increases when the value of ¢ is equal to zero and b is
equal to (3n+ 1). Using the definition

b=3n+1) and

c= }’l(3}’l) (n+1)/(2n+1) _ (3n)n/(2n+l)/3 (68)
the exact solutions of dimensionless temperature 0, and
similarity stream function f in condition 4 can be ex-
pressed as the following equation:

S =

12 12
n=0.1
b=(3n+1), ¢=0.0
n=0.5 ( )
1 n=1.0 —_—6 4
f n=30
08 4 os
n=2.0
0, f
06 ~ os
n=1.0
04 n=05 {04
n=0.1
02 P o2
0 0
0 1 2 3 ‘ s 6 7 8 9 10

Similarity Variable 7,

Fig. 5. The dimensionless temperature 0 and similarity stream
function f profiles versus 7, for various values of power index n
for ¢ = 0 in the condition 4.

_exp[~ ()" )

(3n)"/@ D (69a)

)

I’l[l - exp(_(3n)”/(2”+1>’,’2/n)] _ 69b
(3n)(n+l)/(2n+l) ¢ (69b)

We have to assume the initial value of 6,(0) and 7.,
when the shooting method is used to solve the problem
numerically. The above results can be utilized to re-
inforce the accuracy of initial value.

3.2. The local non-similarity solutions

In this study, local non-similarity solutions are ob-
tained by using the fourth-order Runge-Kutta scheme
and the shooting method. Let us consider the results.
There are four conditions to examine.
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3.2.1. Condition 1

For the condition 1, the step-sizes Ay = 0.001 and the
value 7., = 20.0 were employed. On the other hand, we
have to use An < 0.001 and 5, >20.0 if »<0.2 or
Q> 0.3. The values of [—0,(0)] for various values of
power index n, the permeable constant ¢, and the yield
stress parameter Q are shown in Table 1. In Table 1, if
the parameters ¢ and » are fixed then the dimensionless
temperature gradient on surface [—0](0)] increases with
Q. Also, the values of [—6)(0)] decrease as the value of ¢
increases when the values of n and Q are fixed.

401

The power index n and the permeable constant ¢ ef-
fects are presented in Figs. 6 and 7, which show the di-
mensionless temperature profiles and the dimensionless
stream function profiles.

The power index n effects: Fig. 6 shows that both
the dimensionless thermal boundary layer thickness d,
and the dimensionless momentum boundary layer
thickness o, increase with n if the parameters b, c,
and Q are fixed. Besides, the values of f(co) increase
with power index n if the values of b, ¢ and Q are
fixed.

Table 1
Value of [—0](0)] when b = 0.5 for condition 1 for the selected power index values of n
—0,(0) Q=0.1 0—=023
c=0.0 c=1.0 c=-1.0 c=0.0 c=1.0 c=-1.0
n=0.25 0.495623 0.174742 1.643762 0.270265 0.069117 1.542840
n=20.5 0.610144 0.298646 1.284695 0.427352 0.184384 1.149843
n=1.0 0.705021 0.416326 1.176628 0.565566 0.317962 1.046213
n=2.0 0.774323 0.504118 1.158620 0.668687 0.428384 1.047499
n=23.0 0.803006 0.540152 1.160721 0.711981 0.475908 1.060492
16 16
Ll L b=0.5, ¢=0.0, n=1.0 —f
b=0.5,c=0.0,n=0.5 —f 14 b —_— 8 — 14
Q=00
- 12
Q=01 1
- o8 f
Q=03
= 06
a=06 |
—o02
0
8 10 12 14

(a) Similarity Variable 7, (b) Similarity Variable 7,
3 3
b=0.5, c=0.0, n=3.0
=00
25 f J2s
—

2 f q:
6, f
15 F Q=01 15

=03
1 4 1
006
=03 006
os Q=01 os
000
0 0
o 1 2 3 4 s & 71 8 9 1 n
(c) Similarity Variable 7,

Fig. 6. The dimensionless temperature and similarity stream function profiles versus 5, for various values of dimensionless yield stress
Q when b = 0.5, ¢ = 0.0 in the condition 1.
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s 15
b=0).5, Q=0.1, n=0.25 J

c=-10

(a) Similarity Variable 7,

I b=0.5,Q=0.1,n=1.0

b=0.5, Q=0.1,n=3.0.

15 | ! | ! 15
0 1 2 4 5 6
(© Similarity Variable 7 ‘

Fig. 7. The dimensionless temperature and similarity stream function profiles versus #, for various values of permeable constant ¢

when b = 0.5, Q@ = 0.1 in the condition 1.

The yield stress parameter Q effects: It is seen from
Fig. 6 that the dimensionless thermal boundary layer
thickness o; increases with Q and the dimensionless
momentum boundary layer thickness o, decreases as Q
increases if the parameters b,c, and n are fixed. Es-
pecially, the effect of power index Q for J,, of dilatent
fluids (n = 3) is more evident than the others (n < 3).

The permeable constant c effects: 1t is found from Fig.
7 that both the dimensionless thermal boundary layer
thickness d, and the dimensionless momentum boundary
layer thickness d,, increase with c if the parameters b, Q,
and n are fixed. The effect of permeable constant ¢ for
the dimensionless temperature profiles of pseudoplastic
fluids (n = 0.25) can be seen from Fig. 7(a) that it is very
different from the other fluids. In condition 1, it is found
that Eqgs. (61)-(65) can be rewritten as:

q:v(x*) _ _9/1 (O)Ra'lz/Z(r*)mC(2b—1)/27 (70)
Nuy = =0, (0)x*Ra'/> ()" V2, (71)

Nu = 0} (0)Ra,’? / ()"0 dx* (73)

JO

1
Q* — —27'5'”(W*)]7"’9’1 (O)Ral/Z/ (r*)ZmC(bel)/Z dx*. (74)

n
0

3.2.2. Condition 2

For the condition 2, the step-sizes Ay = 0.0001 and
the value 5, =20.0 were employed. The numerical
values of [—0)(0)] for various values of power index n
and the permeable constant ¢ are shown in Table 2. The
results are seen to be in good agreement with the exact
solutions within 0.0253% discrepancy.

The power index n effects: It can be seen from Fig. 8
that the trend of the profiles of the dimensionless stream
function fis a straight line for n < 0.5. From Fig. 8, it is
quite obvious that there is not much alteration in the
profiles of the dimensionless temperature for ¢ = 1.0
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Table 2
Compare value of [0, (0)] of numerical solutions and exact solutions when b = n for condition 2
—0,(0) c=0.0 c=1.0 c=-10
Numerical Exact Numerical Exact Numerical Exact
n=0.25 0.500001 0.500000 0.2071087 0.2071068 1.207130 1.207107
n=20.5 0.707183 0.707106 0.3661597 0.3660254 1.365680 1.366025
n=0.75 0.866026 0.866025 0.5000010 0.5000000 1.500006 1.500000
n=1.00 1.000000 1.000000 0.6180364 0.6180340 1.618047 1.618034
n=1.5 1.224745 1.224745 0.8228779 0.8228756 1.822912 1.822876
n=20 1.414213 1.414214 1.0000027 1.0000000 2.000062 2.000000
n=3.0 1.732063 1.732051 1.3027680 1.3027760 2.302693 2.302776
ir 3
25 25 t b=1.0, c=0.0
=10, c= - 25 b 25
2 b b=1.0,c=1.0 I =30 ) f L —
! // _ __.n=20 A 13 2 F -1 2
4 1 _m=20
_ é |
n=1.0 | os f 115 L5 f
n=0.5
" [} \ n=10 1
03 n=0.5
os b o5
1 n=0.1
A 15 0 - 0
0 2 4 6 8 10 12 14 0 1 2 3 4 5 6 7 8
(a) Similarity Variable 7, (b) Similarity Variable 7,
3 3
b=1.0, c=-10 n=30
sl ——f — d2s
¢ =20
2 F 4 2
o =19
Vst qis f
0=0§
n=0.1
1 = 1
n=0.1
n=0.5
05 n=1.0 —o0s
n=203.0
o - d - Il 0
0 1 2 3 4 5 6 7
(©) Similarity Variable 7

Fig. 8. The dimensionless temperature and similarity stream function profiles versus #, for various values of power index n when
b = 1.0 in the condition 2.

(withdrawal of fluid). In condition 2, it is found that O = —Zn”’(W*)“”")()'l (0) Ra}/z
Eqgs. (61)—(65) can be rewritten as:

1
% / (r*)2mS1/2n€(b7n+2nb)/2n dx*. (79)
q:](x*) — _0/1 (O)Ra,l/z (}I_*)mSl/ZnC(h—n+2n}>)/2n7 (75) 0
Nux _ _0/1 (O)x*Ra,l,/z (V* )mS]/2n€(b7n)/2n’ (76)
B ket 1 3.2.3. Condition 3
h=— 7? 0, (0)Ral/? / ()" St/ o g (77) For the condition 3, the step-sizes Ay = 0.001 and the
0 _ .
| value 1, = 30.0 were employed. The numerical values of
Nu = —0,(0)Ra/? / ()" S 2= 2 gy (78) 6,(0) for various values of power index n, the permeable
" Jo constant ¢, and the yield stress parameter 2 are shown in
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Table 3. It can be seen from Fig. 9 that the values of
0,(0) and the dimensionless thermal boundary layer
thickness ¢, increase with Q for —1 <c¢ < 1. In regard to
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much alteration for discharging effects —1<c¢ <0, as
shown in Fig. 10. The Egs. (61)—(65) can be rewritten as:

w(x\ op 1/2( b
the value of f(c0), we can find that it decreases as the ¢u(x") = Ra,*(x")", (80)
value of ¢ increases. From Fig. 9, it is very clear that Nu, = Rarl,/z(x*)('”o's)/(z”“)/02(0)7 (81)
there is not much alteration in the values of the di- _ 2
mensionless temperature on the wall surface 0,(0) when h = 2Ra,/ ke [[0:(0)1], (82)
b, Q, and 0 < ¢ < 1 are fixed. But the values of 0,(0) have Nu = 21%,’11/2/6)2(0)7 (83)
Table 3
Value of 6,(0) when b = 0.5 for condition 3 for the selected power index values of n
0,(0) Q=01 Q=03
c=0.0 c=1.0 c=-1.0 c=0.0 c=1.0 c=-1.0
n=0.1 1.237487 1.2596157 1.175618 1.422377 1.444833 1.343474
n=20.5 1.203991 1.3217958 1.040076 1.350715 1.468962 1.164503
n=10 1.123101 1.2939429 0.937183 1.245441 1.414543 1.044229
n=2.0 1.041077 1.2481310 0.850165 1.140304 1.341392 0.942338
n=23.0 1.002440 1.222219 0.812374 1.090592 1.301566 0.897609
3 3 2 2
b=0.5, c=1.0, Q=00 2s b=0.5, c=1.0, 2=0.3

(b)

b=0.5, c=1.0, Q=06
—f

_—0

0, !
05 f

0

05

-1

15 3 1 ] 1 1 1 .15

0 2 4 6 8 10 12 14
(© Similarity Variable n,

Fig. 9. The dimensionless temperature and similarity stream function profiles versus #, for various values of power index n when

b =0.5, c = 1.0 in the condition 3.
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b=0.5, n=3.0, c=0.0

35 15
[ b=0.5,n=3.0,c=-1.0
s =00 - ;
3F Uk
R e
¢ - 25
,,_E)io'l = 2 f
02 =03
< .
1
Hos
1 1 0
0 2 4 6 8 10
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3
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Fig. 10. The dimensionless temperature and similarity stream function profiles versus #, for various values of dimensionless yield stress

Q when b = 0.5, n = 3.0 in the condition 3.

Q=01

Nu,/Ra)* "

Fig. 11. The values of Nu, /Ra,l/ 2 versus x* for various values of
power index n and permeable constant ¢ in the condition 3.

Q" =2Ra!*w*/(b+1) forb> —1. (84)

If we consider the surface shape to be a vertical plane
then we have to select the exact value of » which is

equal to (—1/2). The values of the local Nusselt number
Nu,/Ra!/? increase with the power index n and decrease
as the value of ¢ increases except ¢ = 1 as shown Fig.
11.

3.2.4. Condition 4

For the condition 4, the step-sizes Ay = 0.001 and
the value 7, = 15.0 were employed. The numerical
values of [0,(0)] for various values of power index n
and the permeable constant ¢ are shown in Table 4.
It can be seen that there is agreement by comparing
with the exact results. The maximum error is under
0.157%.

The permeable constant c effects: From Fig. 12, it can
be seen that the values of 0,(0), the dimensionless mo-
mentum boundary layer thickness d, and the dimen-
sionless thermal boundary layer thickness J; increase
with ¢ when the values of b and n are fixed. Moreover,
the value of f(oo) decreases as the value of ¢ increases
and the trend of it is still equal if ¢ > 0. These Eqs. (61)—
(65) can be rewritten as:
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Table 4
Compare value of 6,(0) of numerical solutions and exact solutions when » = 3n + 1 for condition 4
0,(0) n=0.1 n=0.5 n=10 n=20 n=3.0
Numerical 1.1046523 0.9032978 0.6930148 0.4878512 0.389365
Exact 1.105537 0.903602 0.693361 0.488359 0.389977
Error (%) 0.080 0.034 0.050 0.104 0.157
2 2 2 2
he.S. ne0.8 . b=0.5,n=1.0 -
d1s LS 15
c=-1.0
c=-1.0
1 1 =05 —
=05 I ¢=00
00 . 05 s - os
= 05 f 62‘ . f
0 0 L + s 0
/ Q‘c:-].o
EEH 05 F c=0.5 ~]-058
c=0.0
. c=0.5
1! “f c=1.0 1!
15 L 1 1 1 1 L 1 1 < il 1 1 1 L 1 L 15
0 1 2 3 4 s 6 7 8 0 1 2 3 4 5 6 7 8
(a) Similarity Variable 7, (b) Similarity Variable 7,
25 25
b=0.5, n=3.0
2 —1 c=-1.0 1 2
=05

L 1 1 1 15

4 5 6 7 8

(c) Similarity Variable 7,

Fig. 12. The dimensionless temperature and similarity stream function profiles versus #, for various values of permeable constant ¢

when b = 0.5, n = 3.0 in the condition 4.

¢,(x") = Ra,*(x")’, (85)
Nu, = Ral/z(x*)(HHI)/(ZHDLII/(Z”H)/Qz(o)a (86)
_ 2 1 ke 1/(2n+1)

5 @nt Dkaa ™20 o 4o (87)

(b-+n -+ 1)i0,(0) "
(b+n+1)0y(0) "
(l—rn)Ra:’/z(l _a2)1/2/(b+m+ 1), (89)

Nu= (88)
Q*

= 21" (W™)

where b > —(n+ 1) and b > —(m + 1). For a fixed value
of n and value of ¢, the value of heat transfer rate

Nu/Ral/? increases with increasing a; otherwise, the
value of heat transfer rate Nu/Ra!/? decreases as an in-
crease in the value of ¢, for a fixed value of n and value
of a, as in Fig. 13. Therefore, it is concluded that both
increasing n and decreasing ¢ have better effects on the
heat transfer.

4. Conclusions

The local non-similarity method is applied in this
theoretical study. The fourth-order Runge-Kutta
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35
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15 F
1 3
05 F
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Fig. 13. The values of Nu/Ra!/> versus power index n for
various values of angle ¢ and permeable constant ¢ in the
condition 4.

scheme method and shooting method are employed to
analyze the steady-state natural convection external
fluid flow and heat transfer over the permeable two-di-
mensional or three-dimensional axisymmetric bodies in
a fluid-saturated porous medium filled with one of the
non-Newtonian fluids. The governing boundary layer
equations and boundary conditions are changed into a
dimensionless form by the local non-similarity trans-
formations and the resulting equations are solved by the
method above. Let us take notice of the value of
s < 10.0 for solving solutions usually in the past doc-
uments. In this study, particularly, we have to set en-
ough large values 7, > 20 for the condition 1 in case 1
and 7., > 30 for the condition 3 in case 2. Otherwise, the
numerical results will produce very large errors.

Commendably, the exact solutions are found in the
conditions 2 and 4, respectively. From the numerical
results obtained in this study, it showed that the begin-
ning of natural convection would take place if certain
inequality of the dimensionless yield stress is provided.
The dimensionless thermal boundary layer thickness J;
increases with decreasing the value of power index n and
decreases as the value of the permeable constant ¢ de-
creases. The predictions of dimensionless temperature 6
and stream function f profiles are presented. The results
are in good agreement with the exact solutions within
0.157% discrepancy. It is concluded that both increasing
n and decreasing ¢ have better effects on the heat
transfer, when the value of « is fixed, namely, the ge-
ometry of body is fixed.
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